mirror of
https://github.com/gabrielkheisa/control-system.git
synced 2025-01-18 12:23:25 +07:00
Add documentation
This commit is contained in:
parent
ed6e7655a2
commit
14e9e99b0b
43
README.md
43
README.md
@ -6,4 +6,45 @@ Libraries that used in this program is ```numpy``` and ```pandas```. ```numpy```
|
||||
```
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
```
|
||||
```
|
||||
|
||||
## RouthStability Class
|
||||
This class contains lots of procedures to simplify our Routh Stability Table Generator process.
|
||||
```
|
||||
def __init__(self, den):
|
||||
self.den = np.array([float(item) for item in den.split()])
|
||||
self.deg = len(self.den)
|
||||
```
|
||||
The constructor ```__init__``` takes string of coefficiens from polynomial, extract the number, and load into class variable. It also define ```self.deg``` variable to save array's length, reducing number of calling ```len()``` function
|
||||
|
||||
```
|
||||
def set_k(self, k):
|
||||
self.den = np.append(self.den, float(k))
|
||||
self.deg += 1
|
||||
```
|
||||
This function only takes one number from user and append it to ```self.den``` which defined as gain (constant). Also ```self.deg``` will increase by one
|
||||
|
||||
```
|
||||
def calc_routh(self):
|
||||
height = (self.deg+1)//2
|
||||
arr = np.zeros((height + 2,height))
|
||||
for index in range(self.deg):
|
||||
if index % 2 == 0:
|
||||
arr[0][index//2] = self.den[index]
|
||||
else:
|
||||
arr[1][(index-1)//2] = self.den[index]
|
||||
|
||||
for i in range(2, height+2):
|
||||
for j in range(height-1):
|
||||
arr[i][j] = (arr[i-1][0]*arr[i-2][j+1] - arr[i-2][0]*arr[i-1][j+1])//2
|
||||
arr[i][j] += 0
|
||||
|
||||
self.df = pd.DataFrame(arr)
|
||||
self.show_tab()
|
||||
if self.is_stable() == True:
|
||||
print("SYSTEM IS STABLE")
|
||||
else:
|
||||
print("SYSTEM IS UNSTABLE")
|
||||
```
|
||||
```calc_routh(self)``` as the core process of this class contains initialization and process about Routh Stability Process. Firstly, it define an empty zero (basically it filled with zeros) and iteratively being inserted by ```self.den``` (refering to Routh Table principle). After that, each cell will be updated by calculating Routh Table formula
|
||||
$$ arr_{i,j} = \frac{arr_{i-1][0]*arr[i-2][j+1] - arr[i-2][0]*arr[i-1][j+1]}{arr_{i-1][0]} $$
|
||||
|
Loading…
Reference in New Issue
Block a user