Add assignment 6

This commit is contained in:
nandard 2022-09-22 16:23:31 +07:00
parent 29bd6fc473
commit a14b31a134
2 changed files with 175 additions and 0 deletions

View File

@ -0,0 +1,34 @@
# Derivative Effect on Control System
This dir is belong to Control System class contains with Tuning PID with ZN1 and PSO on motor system.
## Software
This program ran in Matlab
## Variables
`s = tf('s');` defines `s` as 'frequency domain' for transfer function and will be used further.
```
J = 0.01;
b = 0.1;
K = 0.01;
R = 1;
L = 0.5;
```
Those variable comes from BLDC control system.
```
c1=2; c2=2; w_max = 1; w_min = 0.1; particles=50; iterations=100;
var=3; e_max = 1; e_min=0.1;
% Search limit
lim_min = 0;
lim_max = 2500;
```
Variable above is the constant for PSO tuning.
## Testing
### Notes
Contact nanda.r.d@mail.ugm.ac.id for more information
### Links
You can access the source code here
[github.com/nandard/control-system.git](https://github.com/nandard/control-system.git)

View File

@ -0,0 +1,141 @@
clc; clear all; close all
% system function
s = tf('s');
J = 0.01;
b = 0.1;
K = 0.01;
R = 1;
L = 0.5;
num_motor = [K];
den_motor = [J*L J*R+b*L R*b+K*K];
motor = tf(num_motor,den_motor);
motor_l = feedback(motor,1);
step(motor_l)
%step(motor_l/s);
%impulse(motor_l);
%step(motor_l/s^2);
hold on
stepinfo(motor_l)
[y,t] = step(motor_l);
ss_error = abs(1 - y(end))
tic
% Constant
c1=2; c2=2; w_max = 1; w_min = 0.1; particles=50; iterations=100;
var=3; e_max = 1; e_min=0.1;
% Search limit
lim_min = 0;
lim_max = 2500;
% imization steps
steps = 0;
% Initialization
for m=1:particles
for n=1:var
v(m,n)=0;
x(m,n)=lim_min+rand*(lim_max-lim_min);
xp(m,n)=x(m,n);
end
% Model Parameters
Kp = x(m,1);
Ki = x(m,2);
Kd = x(m,3);
% Simulation Model
pid = tf([Kd Kp Ki],[0 1 0]);
motor_cl = feedback(motor * pid, 1);
y = step(motor_cl);
% TIAE (Objective Function)
total = 0;
T = size(y);
for t=1:T
total=total+(t*abs(y(t)-1));
end
ITAE(m) = total;
end
% Find the best value
[prev_best, loc] = min(ITAE);
xg(1) = x(loc,1);
xg(2) = x(loc,2);
xg(3) = x(loc,3);
for i=1:iterations
e = e_max - ((e_max - e_min)*i)/iterations;
w = w_min + ((iterations - i)*(w_max - w_min))/iterations;
for m=1:particles
for n=1:var
v(m,n) = w*v(m,n) + c1*rand*(xp(m,n)-x(m,n)) + c2*rand*(xg(n)-x(m,n));
x(m,n) = x(m,n) + e*v(m,n);
% Constrain
if x(m,n) < lim_min
x(m,n) = lim_min;
end
if x(m,n) > lim_max
x(m,n) = lim_max;
end
end
% Update Personal Best
Kp = x(m,1);
Ki = x(m,2);
Kd = x(m,3);
pid = tf([Kd Kp Ki],[0 1 0]);
motor_cl = feedback(motor * pid, 1);
y = step(motor_cl);
total = 0;
T = size(y);
for t=1:T
total=total+(t*abs(y(t)-1));
end
ITAEp(m) = total;
if ITAEp(m) < ITAE(m)
ITAE(m) = ITAEp(m);
xp(m,1) = x(m,1);
xp(m,2) = x(m,2);
xp(m,3) = x(m,3);
end
end
% Update Global best
[now_best, loc] = min(ITAE);
if now_best < prev_best
prev_best = now_best;
xg(1) = xp(loc,1); % actually this can change to x(loc,n)
xg(2) = xp(loc,2);
xg(3) = xp(loc,3);
end
steps = steps + 1;
best_value(steps) = prev_best;
end
toc
% Final Testing
ITAE_min = prev_best
Kp = xg(1)
Ki = xg(2)
Kd = xg(3)
pid = tf([Kd Kp Ki],[0 1 0]);
motor_cl = feedback(motor * pid, 1);
step(motor_cl)
%step(motor_cl/s);
%impulse(motor_cl);
%step(motor_cl/s^2);
legend("Before Tuning","After tuning");
title("Step Response");
stepinfo(motor_cl)
[y,t] = step(motor_cl);
ss_error = abs(1 - y(end))
t = 1:steps;
figure
plot(t,best_value, 'r--','LineWidth',2);
xlabel('Iteration');
ylabel('Cost Function (ITAE)');
legend("ITAE for PSO-PID");
title("ITAE with each iteration")